
Introduction

In a previous paper, Camiz et al. (2006) introduced the

Hierarchical Factor Classification (HFC) of variables

which builds a hierarchy on a set of variables with a re-

cursive procedure. In each step, the algorithm computes a

centered non-standardized PCA on pairs of variables,

each representative of a group. Then it chooses for merg-

ing the two groups for which the second PCA eigenvalue

is minimum and considers the first principal component

as representative of the newly formed group. By centered

non-standardized we mean that PCA uses the covariance

matrix rather than the correlation matrix of the variables.

This method is one of the very few specifically de-

signed for clustering variables. Several advantages are at-

tributed to it in comparison to the others, especially its

ability to provide principal planes associated with each

node of the hierarchy, where both variables and units can

be represented, as in a common PCA. On these planes, all

variables gathered in the group are represented as well as

all units as seen only by these variables. Indeed, in this

case the positions of points on the plane depend only on

the two involved representative variables, thus only on the

variables of the group. In fact, the representative variables

are linear combinations of the variables belonging to the

represented group. This may be used to understand the in-

fluence of the variables of each group on the point pattern

on the principal planes. As a result, the interpretation of

the principal components is straightforward, since the

first one represents what the gathered variables have in

common, whereas the second one shows their differences.

In addition, the gathering of variables regardless of the

sign of their mutual correlation gives groups that have the

form of dipoles, say two subgroups opposed in their

meaning. This makes easier the interpretation of the re-

sults for the end user.

In this paper, we compare the performance of this

method with other hierarchical classification mehods. In

particular, we shall deal with both single and complete

linkage methods (Anderberg, 1973, Legendre and Legen-

dre, 1998, Podani, 2000) based on the correlation matrix.
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The comparison will be based on simulated data with

known group structure.

Hierarchical classification of variables

In the literature, the classification of variables re-

ceived little attention and very few methods are currently

available, especially hierarchical methods are lacking.

Therefore, the same methods used for classifying units are

applied to variables in the software programs currently

available. Indeed, only in SAS (SAS Institute, 1999) the

procedure VARCLUS is proposed, which is a divisive al-

gorithm that at each step tries to define groups of variables

as unidimensional as possible. Other methods that appear

interesting, such as Lermann (1991) and Vigneau et al.

(2006) are based on different principles and are not easily

available for a standard use.

For this reason, we compare here HFC with the two

simplest hierarchical methods that can be easily found or

implemented: the single and complete linkage. These

methods can be used regardless of the kind of objects that

are being classified and need only that a resemblance (as-

sociation) matrix exists measuring the degree of similar-

ity or dissimilarity among the objects. Indeed, on this ba-

sis two objects will be considered most similar if their

similarity is maximum or their dissimilarity is minimum.

In order to build a hierarchy of variables, the above-

mentioned algorithms are agglomerative: at the beginning

each variable forms a group and the association matrix

contains the defined pairwise relations among variables;

then:

1) each agglomerative step joins the two existing groups

that optimise the chosen objective function;

2) the association matrix is redefined according to the new

group structure resulting from step 1;

3) the process is repeated until all variables are joined in

one group.

If n is the number of variables to classify, there will be n-1

clustering steps. The clustering process will indicate n-1

possible partitions and the decision on which partition to

take is left to the user (see Milligan and Cooper 1985, for

a cricital evaluation).

The algorithms differ in both the objective function to

be optimized and the criterion for redefinition of inter-

group association (step 2). It is questionable how to apply

methods other than single and complete linkage to vari-

ables, since it does not make sense to calculate average

covariances or correlations, or Euclidean distance among

variables, as required e.g., by Ward’s (1963) method. In

addition, since they are a kind of “extreme” methods, the

comparison with other monotone clustering techniques

seemed unnecessary. So, we limited our attention to sin-

gle and complete linkage which do not recalculate the as-

sociations among the formed groups but search at each

step either the minimum or the maximum. In single link-

age clustering (Florek et al., 1951, Sneath, 1957, Gordon,

1999), the association between two groups will be the one

between the most similar variables in these groups. In

complete linkage clustering (Sørensen, 1948, Lance and

Williams, 1967, Gordon, 1999), it will be the association

between the most dissimilar variables in these groups: this

would guarantee, at each step, that each cluster would not

contain variables whose correlation is less than the cur-

rent fusion level. In both cases, it is wiser not to consider

the sign of the correlation, since two variables with high

negative correlation may reflect similar ecological proc-

esses, though in opposite directions, thus they should be

associated at a higher level than two independent vari-

ables with near-zero correlation.

Hierarchical factor classification

We refer to Camiz et al. (2006) for a detailed descrip-

tion of the HFC method, as applied to quantitative (ratio

scale) variables. Here, we briefly recall its basis, which

may be summarized as follows:

1) At the outset, variables are standardized and each vari-

able is considered representative of the singleton group

composed by itself. Then, the recursive algorithm is

based on the following steps:

2) All pairs of existing groups are compared through their

representative variables: each pair of representative vari-

ables is submitted to a centered non-standardized PCA,

i.e., the PCA of their 2 × 2 covariance matrix;

3) The pair of representative variables whose second PCA

eigenvalue is minimum is selected;

4) The two groups of variables corresponding to the se-

lected pair of representative variables are merged in a

group that becomes a new node of the hierarchy;

5) The first principal component of this PCA, i.e., the set

of coordinates of units on the first principal axis, is chosen

as representative variable of the new node;

6) The second eigenvalue of this PCA is chosen as fusion

level of the new node in the hierarchy.

The steps (2)...(6) are repeated n-1 times, leading to a

complete hierarchical classification of the variables.

We remind here that in the case of standardized vari-

ables covariance equals correlation, so that if the compari-
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son is done between two original variables an ordinary

PCA results, whereas for all other comparisons the results

will be different: in particular, the trace of the matrix will

be larger than 2. As a consequence, the range of the first

eigenvalue is unpredictable and depends on the number of

variables in the group and the agglomeration process,

whereas the second one is non-decreasing along the proc-

ess. According to the PCA logic, both eigenvalues repre-

sent a variance; the first eigenvalue is the variation com-

mon to the two merging groups, whereas the second

eigenvalue is the amount of variance that is not shared.

Thus, the method is akin to Ward’s (1963) clustering

method and it is natural to choose the second eigenvalue

as the fusion level of the hierarchy.

With this method, each group may have the form of a

dipole, since the sign of the covariance between the con-

cerned variables has no influence on the sign of the prin-

cipal components. Therefore, the variables of a node may

form a dipole of two groups opposed to each other in the

direction of its representative variable, according to the

sign of their pairwise correlation. This is not a drawback

of the method, but rather a correct idea of aggregation,

since the sign of the correlation depends on how each

variable is measured and not on its relation with the oth-

ers.

Experiments

To evaluate the behaviour of HFC in comparison with

single and complete linkage clustering, we used simulated

data sets with known group structure. This structure was

defined by the number of variables and by the different

levels of correlation between variables in the same group

and in different groups.

We started by defining four types of matrices, S1, S2,

S3, and S4, composed of correlations between variables

gathered in groups (Fig. 1). For each type, eight matrices

were defined, with the correlation between variables of

the same group ranging from 0.1 to 0.8 by steps of 0.1.

The types S1, S2, and S3 all refer to 12 variables struc-
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tured in three groups with different correlation levels be-

tween groups. In the matrices of type S1, each group con-

tains 4 variables and the correlation between variables of

different groups is 0. In the matrices of type S2, the struc-

ture is the same, but the correlation level between groups

is 0.3. In matrices of type S3, the three groups contain 5,

4 and 3 variables and the correlation between groups is 0.

The matrices of type S4 contain 32 variables, with the cor-

relation structured in 6 groups containing 16, 8, 4, 2, 1 and 1

variables, with the correlation between groups equal to 0.

On the basis of these 32 matrices, we built 32 simu-

lated data tables with a given correlation matrix. The gen-

erating procedure is that described by Ganeshanandam

and Krzanowski (1990), modified by Peres-Neto and

Jackson (2001), and used by Pillar (1999). Basically, it

consists in a Cholesky decomposition of the specified cor-

relation matrix C in the product of a triangular matrix by

its transpose: C = L’L. If L is left multiplied by a unitary

matrix U (that is such that U’U = I), the searched simu-

lated data table S = UL is obtained, since its correlation

matrix is S’S = L’U’UL = L’L = C. In our case, C was

fixed as said and as U we used a unit matrix of stand-

ardized coordinates obtained by an ordinary PCA of ran-

domly generated data tables of 1000 units and either 12 or

32 variables.

Indeed, for all 32 simulated data sets with 1000 units,

the correlation matrix was exactly the one originally de-

fined. Then, 10 samples with 30 sampling units each were

taken at random from each data set. The three clustering

methods were applied on all 320 samples (10 samples ×
32 simulated data sets).

In order to test how well the methods could recover

the expected groups in each data set, the partitions ob-

tained by the various methods - 3 groups in S1, S2, and S3,

and 6 groups in S4 - were compared to those expected ac-

cording to the pre-defined correlation structure of the

simulated data. Note that we did not consider the problem

of finding the optimal partition level that could lead to the

identification of the expected structure, which is still an

open question. The agreement was measured by the infor-

mation-based coherence coefficient (Orlóci, 1991) com-

puted on the contingency tables crossing the partitions ob-

tained with the expected one. The coherence coefficient

is given by:

where H�� is the mutual entropy and H��� is the joint en-

tropy of partitions i and k, both of order one. In this,

where p�� is the joint frequency for groups j and h in par-

titions i and k with s� and s� groups respectively, and p���

and p�� are the frequencies of groups j and h respectively,

H���= H��+ H�� – H��, where H�� and H�� are the Shannon

entropies of each partition.

In order to test the statistical significance of differ-

ences among the clustering methods, an ANOVA was per-

formed on the sums of squares of the coherence coeffi-

cients. The tests were based on their empirical probability

distribution, obtained by a randomization test after 1000

random permutations of the coherence coefficients (Pillar

and Orlóci 1996).

For data simulation and HFC we used a program spe-

cifically developed, whereas for the other cluster analyses

and randomisation testing the MULTIV package was

used. HFC is now implemented in MULTIV (Pillar

2006).

Simulation results

In Figure 2, the mean and the standard deviation of the

coherence coefficient between the expected partitions and

those observed are reported. Mean and standard deviation

are calculated on the ten replicates of any combination of

correlation within groups, clustering technique, and type

of matrix group structure. In each diagram, the coherence

coefficient is represented according to the increase of the

correlation within groups (strength of group structure),

and the graphics are arranged according to the type of ma-

trix (in row) and the clustering method (in column) con-

sidered. In all cases corresponding to these graphics, as

the correlation level within the simulated groups of vari-

ables increased, all clustering methods of variables were

able to reveal partitions in perfect agreement with those

expected. Therefore, when groups are fuzzier (low

within-group correlation levels) all methods behave

worse than when they are sharper. In data sets with a

sharper type of correlation structure (S1 and S3), the per-

fect agreement was reached at a lower correlation level

than the others (S2 and S4). The three clustering methods

did not differ in their performance (agreement with ex-

pected partition), except in the case of not so clearly de-

fined groups in S2 having within-group correlation of 0.4

(P = 0.048), and in a lesser extent in S1 and S3 again with

within-group correlation of 0.4 (P = 0.067, P = 0.058 re-

spectively); no difference results for S4; see Table 1. In

these cases, pairwise contrasts indicated that the perform-

ance of HFC was better than both complete and single

linkage in S2 and better only than single linkage in S1 and
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S3. The performances of complete and single linkage

never differed significantly.

Conclusions

HFC was introduced by Denimal (2001) to suggest a

better procedure for the user than the classical one based

on the tandem of PCA and hierarchical classification of

units. The results of the experiments with simulated data

indicated that HFC of variables performed as good as –

and in some cases better than – both single and complete

linkage clustering in detecting the known group struc-

tures. This certainly guarantees the consistency of its use,

in comparison with these methods.

The experiments with simulated data confirm the con-

sistency of the technique in detecting a predefined struc-

ture, at least at the same level of classical techniques used

for classifying variables. So, the geometrical repre-

sentations of both variables and units on principal planes,

with their ability in getting easier the interpretation of re-

sults (see Camiz et al. 2006), is an extra feature of the re-

sults found, in respect to the others, without any loss in

the intrinsic quality of the results.
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