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Abstract. The use of plant functional types (PFTs) to describe
patterns and processes in plant communities has become es-
sential to study and predict consequences of global change on
vegetation and ecosystem processes. A PFT is a group of
plants that, irrespective of phylogeny, are similar in a given set
of traits and similar in their association to certain variables,
which may be factors to which the plants are responding or
effects of the plants in the ecosystem. To define PFTs relevant
traits must be selected and an appropriate method must be used
to classify plants into types. We critically review methods
used for the analysis of PFT-based data and describe a new
recursive algorithm to numerically search for traits and find
optimal PFTs. The algorithm uses three data matrices: de-
scribing populations by traits, communities by these populations
and community sites by environmental factors or effects. It
defines PFTs polythetically by cluster analysis, revealing plant
types whose performance in communities is maximally asso-
ciated to the specified environmental variables. We test the
method with data from natural grassland communities of
southern Brazil, which were experimentally subjected to com-
binations of grazing levels and N-fertilizer. The new method is
found to be better than similar analytical procedures previ-
ously described. Redundancy among traits is discussed and a
procedure for comparing alternative solutions is presented
based on the similarity in terms of PFT responses between
different trait subsets. The concept of PFT response group is
illustrated by example.

Keywords: Congruence; Grassland; Grazing; Plant form; Ni-
trogen; Optimization; Redundancy; Response group; Trait.

Introduction

Ecologists often describe plant communities by spe-
cies composition and by data analysis reveal compo-
sitional patterns in time or space and connections with
environmental variables. However, the validity of the
conclusions is restricted by phytogeographical bounda-
ries, for the potential species pool is not the same every-
where. Furthermore, variability within species, which
may be important in some processes, cannot be taken
into account in species based community descriptions.
Functional classifications of plants have been used as an

alternative to overcome the limitations of species based
descriptions and will be essential for studying and pre-
dicting the consequences of global climate change on
vegetation and ecosystem processes.

The idea of defining plant types that are, in some
way, related to function is not new in ecology (Warming
1895; Raunkiaer 1908, in Raunkiaer 1934, among oth-
ers; review in Pillar & Orlóci 1993a). Several terms
have been used that express the same idea (e.g. growth-
forms, life forms, strategies, guilds) despite inconsisten-
cies in terminology pointed out by Semenova & van der
Maarel (2000). More recently the term plant functional
type (PFT) has been suggested with a broader connota-
tion (Steffen et al. 1992; Lavorel & Garnier 2002). We
adopt the definition that a PFT is a group of plants that,
irrespective of phylogeny, are similar in a given set of
traits and similar in their association to certain variables.
These variables may be factors to which the plants are
responding, e.g. soil conditions, disturbance regime or
effects of the plants in the ecosystem, e.g. biomass
production, litter accumulation. The former involves the
definition of functional response groups and the latter
functional effects groups (Lavorel & Garnier 2002).
However, we may often be unable to distinguish re-
sponse from effect (e.g. grazing is affected by vegeta-
tion composition and at the same time selectively re-
moves biomass).

The main problem in adopting a PFT-based ap-
proach is how to define the plant types. Relevant traits
must be selected and an appropriate method used to
classify plants into types. In the traditional species based
approach the classification is given to ecologists by the
plant taxonomists and these problems are of no direct
concern. In the PFT-based approach, however, ecologists
have to search for relevant traits to define the plant types.
We believe this task can be helped by numerical analysis.

In this paper we review methods used for the analy-
sis of PFT-based data and describe a new algorithm to
analytically search for traits and to define optimal PFTs.
In the new algorithm, plant types maximally associated
to specified environmental factors or effects are defined
polythetically by cluster analysis. In this way a number

An improved method for searching plant functional types
by numerical analysis

Pillar, Valério DePatta & Sosinski Jr., Enio E.

Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil;
Fax +555133167307; E-mail vpillar@ecologia.ufrgs.br; http://ecoqua.ecologia.ufrgs.br



324 Pillar, V.D. & Sosinski Jr., E.E.

of PFTs maximally associated to environmental vari-
ables and defined according to a number of traits can be
achieved. We evaluate the method with data from natu-
ral grassland communities of southern Brazil, which
had been experimentally subjected to combinations of
grazing levels and N-fertilizer.

Trait-based data and analysis

Fig. 1 illustrates the kind of data involved when a
PFT based approach is adopted, in which communities
are described by the composition of plant populations
and each population is described by a set of traits. We
define a population as a group of plants belonging to the
same species and acceptably homogeneous for the traits
being considered. The data are organized in matrices for
the analysis: matrix B describes populations by traits
and matrix W describes the communities by the pres-
ence/absence or quantities of these populations. A third
matrix (E) describes the community sites by variables
(qualitative or quantitative) such as environmental and
disturbance factors or ecosystem effects.

We envisage the search for PFTs as a recursive
process, taking into account the three matrix descriptive
approach. Step 1 is the a priori selection of a certain
number of plant traits that are known or suspected to be
ecologically relevant for the chosen factors or effects.
Any qualitative or quantitative trait measured at the
individual or population level, being easy or difficult to
observe, can be used. Step 2 is to collect the data,
involving the description of plant populations for these
traits and communities for the composition of the de-
fined populations and environmental variables. If the
traits are constant or have acceptably low variability
within species, it is more practical to describe the com-
munities by species and then describe the species by the
traits, which allows the use of existing databases. In this

case the PFTs will be groups of species. If within
species variability is high, populations that are reason-
ably homogeneous for the traits have to be delimited
within a species and locally described within a commu-
nity. In that case populations of the same species may
belong to different PFTs, thus taking into account geno-
typic or phenotypic plasticity. Step 3 is data analysis to
search for the most relevant traits for the chosen objec-
tive and to define PFTs accordingly. The process can be
restarted from the first step if the analysis does not
indicate, for the given objective, satisfactorily relevant
traits among those initially selected.

Different approaches have been adopted for the analy-
sis of trait-based data. The analysis may involve only
matrix B (in this case a species ¥ traits matrix) without
reference to or not having the description of communi-
ties (e.g. Grime et al. 1997; Gitay et al. 1999). Patterns,
such as species groups or trends of variation in ordina-
tion space, are interpreted as an indication of the exist-
ence of PFTs, but for this it must be assumed that the
traits evaluated in the species are functional at the com-
munity level. The assumption may be true for traits that
are direct manifestations of function such as the traits
evaluated by Grime et al. (1997), but we should be wary
that observations of plants growing in isolation and
under controlled conditions may not correctly reflect
behaviour in a given community. This approach, there-
fore, must be complemented by further validation to
verify if the identified plant types are functional in the
sense, for instance, that they consistently appear under
given environmental conditions.

The analysis may use matrices B and W, as defined
in Fig. 1, coupled in different ways. One alternative is
the method described by Feoli & Scimone (1984), which
uses the matrix product B'W, resulting in matrix V of
traits ¥ communities. Matrix V is then used in multi-
variate analysis to reveal trends in trait variation in the
community set. Díaz et al. (1992) and Díaz & Cabido
(1997), among others, used this method. One condition
for the matrix multiplication is that the traits in B should
be binary or in a commensurable scale if quantitative.
The matrix multiplication approach is interesting to
identify traits that are correlated at the community level
and to identify environmental connections to these trends
(matrix E). However, the main disadvantage of this
method is that the conclusions, in terms of trait patterns,
may not be directly translated into plant types, as plant
types are not defined at all. The existence of groups of
traits with correlated response at the community level
does not necessarily indicate they will manifest consist-
ently in the same plant types.

Plant types may be defined by pooling, in matrix B,
identical populations for the traits and then pooling, in
matrix W, the corresponding population quantities within

Fig. 1. Example with the three matrices involved in the
analysis of PFT based data. Matrix B contains the descrip-
tion of populations by traits, matrix W the description of
communities by the quantities of each population and matrix
E the description of the community sites by variables.
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the communities (Orlóci & Orlóci 1985; Pillar & Orlóci
1993a). Plant types are in this way delineated by
monothetic classification (Fig. 2a). The classification is
monothetic given that by imagining the clustering proc-
ess hierarchically and divisively, adding one trait at
each clustering step, the splitting of populations at each
step is based on the states of a single trait. In this case the
splitting is done exhaustively into as many branches as
the number of states in the corresponding trait. Traits of
any kind may be used but if a trait is a continuous
variable, or a discrete variable with a large number of
states, for the purpose of having a monothetic classifica-
tion it should be rescaled into a small number of discrete
classes and treated as a nominal trait. After pooling, a
matrix 'F' of PFTs by traits and another matrix 'X' of
PFTs by communities are generated. As an alternative,
fuzzy plant types (Pillar & Orlóci 1991) may be defined
by pair-wise similarities between PFTs based on matrix
F. The similarities range from 0 to 1 and are taken as
degrees of belonging to fuzzy types (matrix U); the
corresponding quantities in the communities are found
by matrix multiplication (T = UX). Matrices X or T can
be used in multivariate analysis to reveal trends in crisp
or fuzzy PFT variation in the community set and to
identify associations with environmental conditions
(matrix E).

McIntyre & Lavorel (2001) identified PFTs by com-
bining different methods to analyse data obtained by the
three matrix descriptive approach. In general terms their
steps were: (1) species response groups were graphi-
cally identified by inspection of canonical ordination
results of matrix W with respect to environmental con-

ditions in E, (2) species groups were similarly identified
in the ordination with matrix B, (3) traits most respon-
sive to the environmental factors (matrix E) were iden-
tified by general linear model analysis, (4) information
from steps 2 and 3 was combined to identify which
species groups (syndromes) were more homogeneous
regarding the most responsive traits and (5) information
from steps 1 and 4 was combined to identify groups of
species belonging to the same group from step 4 which
were also found in the same response group in step 1.
This procedure seems difficult to implement in an auto-
matic algorithm for general use, since subjective judg-
ing is involved in steps 1 and 2.

Automatic optimization methods are available for
searching by numerical analysis relevant traits and PFTs
with data obtained by the three-matrix descriptive ap-
proach (Pillar & Orlóci 1993a, b; Pillar 1999). The
analytical problem is to find a subset of traits and with
them define plant types so that a maximum association
is revealed with environmental factors or effects. PFTs
so defined are likely more functional than PFTs defined
by using non-optimal traits (Pillar 1999). By using a
recursive algorithm (Fig. 3), at any given iteration a
subset of traits is extracted from the initial set in matrix
B. With these traits plant types are defined by monothetic
classification and pooling performed as previously de-
scribed (Fig. 2a). Crisp or fuzzy plant types may be
defined. The objective function maximized is a measure
of congruence, a matrix correlation r(D;D) between
compositional dissimilarities (D), given by the PFTs,
and environmental dissimilarities of the community sites
(DDDDD). In monothetic classification the number of PFTs in
which populations will be grouped is a function of the
number of observed combinations of trait states. There-
fore, too many PFTs tend to be defined when the number
of populations, traits and trait states are large, which is
not practical and has detrimental effects for the analysis
by producing a large number of zeroes (indeterminacy)
in matrix X, and consequently enhancing non-linearity
in the community data.

New optimization algorithm

We describe an algorithm to search for traits and a
number of PFTs maximally associated to environmental
factors or effects. The algorithm is similar to Pillar’s
(1999) as in the previous description, but at any given
recursive iteration a cluster analysis is involved to de-
fine PFTs by polythetic classification based on the ma-
trix of populations by traits (Figs. 2b and 3). Cluster
analysis is applied to each new matrix C of populations
by a subset of traits extracted from matrix B according
to the algorithms described below. The traits may be

Fig. 2. Example illustrating the method for the analysis of PFT-
based data, involving the pooling of populations for the traits
in matrix B (see Fig. 1), generating matrix F. In (a) the pooling
is based on monothetic classification and only identical popu-
lations are pooled, in (b) on polythetic classification by cluster
analysis and similar populations are pooled, in this case defining
three types. The quantities in matrix W (see Fig. 1) of
populations A and C, and populations B and E, plus F in (b),
were pooled accordingly, generating matrix X.
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binary, qualitative, quantitative or a mixture of different
types of traits. A proper resemblance function between
populations must be chosen according to the type of
traits; furthermore, any clustering procedure may be
applied (e.g. Podani 2000 for a review on resemblance
and clustering procedures). To reduce computations iden-
tical populations for the traits may be pooled before cluster
analysis. The algorithm is implemented in software
(SYNCSA) developed by the first author (see App. 1).

As in any cluster analysis the problem of choosing
the number of PFTs (partition level) arises. This is
solved in the algorithm by additionally searching, for
each trait subset, a partition level that maximizes the
objective function (Fig. 3). That is, for each partition
level defining t PFTs, a new matrix X is generated by
pooling, within communities, the performance values of
populations belonging to the same PFTs. Dissimilarities
are then computed from matrix X and evaluated for
congruence, which is the matrix correlation coefficient
r(D;DDDDD), where D is the dissimilarity matrix of commu-
nities based on the composition of PFTs (matrix X)
defined by a given subset of traits at a given partition
level (t groups), and DDDDD is the distance matrix of the same

community sites but based on the environmental factor(s)
or effect(s) (matrix E).

The number of iterations is a function of the number
of trait subsets evaluated (number of different C matri-
ces generated) and the maximum number of PFTs. As
described in Pillar (1999), two alternative algorithms
differ greatly in respect of computation load. The full
algorithm checks all possible subsets of traits with sizes
varying from m = 1 to k, where k is the total number of
traits in matrix B (Fig. 3). The number of subsets in this
case is w1 = 2k – 1. A stepwise algorithm has much lower
computation need, where the number of trait subsets is
w2 = (k2 + k) / 2. The forward stepwise algorithm starts
evaluating subsets with size m = 1, until among the k
traits the one that maximizes the objective function is
found. Then evaluation of subsets with m = 2 follows
until finding the trait (among the remaining k – 1 traits)
that, when added to the first, maximizes the function.
The process continues up to m = k. Thus, for each trait
subset j, where j = 1 to w1 (or w2), partitions with t = 2 to
s PFTs, where s is the number of populations in the data
set, are evaluated for congruence. When s is large it may
not be convenient to evaluate congruence beyond a
maximum number of PFTs. Also, when there is only one
trait in the subset and it is qualitative, the number of
PFTs cannot be less than the number of trait states. The
final output of the procedure is a trait subset and number
of PFTs that maximized congruence with the environ-
mental variable(s).

As a consequence of correlation (redundancy) among
traits, it may turn out that different trait subsets are very
similar in terms of congruence r(D;DDDDD). Redundancy
arises from traits that are associated or from traits nearly
constant in the data set (Pillar 1999). The elimination of
one of two associated traits or of a nearly constant trait
will cause little change in the groups defined by cluster
analysis and by consequence in the resulting matrix X of
PFTs by communities. We can measure redundancy by
the matrix correlation coefficient r(Dh;Di), where Dh is
the dissimilarity matrix of communities based on the
composition of PFTs defined by a given subset h of
traits, at a given partition level, and Di is the dissimilar-
ity matrix of the same communities but based on the
composition of PFTs defined by another subset i of
traits. A high r(Dh;Di) will indicate that the hth subset of
traits is defining a matrix of PFTs by communities very
similar to the one given by the ith subset of traits. The
results of different solutions may be compared to find if
there is any alternative solution with high congruence
with the environmental variable(s) and that could offer a
more parsimonious subset of traits, with high redun-
dancy with the optimal trait subset though not being the
one with the highest congruence.

Fig. 3. Algorithm to find, by numerical analysis, an optimal
trait subset in PFT based data of matrices B, W and E (see
Text and Fig. 1). The definition of types may be monothetic
(as in Pillar 1999) when no cluster analysis is involved and
identical populations for the traits define the types (dashed
line) or polythetic, as described in this paper, when types are
defined by cluster analysis and different partition levels
(number of groups) are evaluated (grey box). The number w
of trait subsets is w1 = 2k–1 if all subsets are evaluated or w2
= (k2+k)/2 if a stepwise procedure is adopted.
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Case study

We tested the method with data from an experiment
evaluating the effect of N-fertilizer and grazing levels
on natural grassland located in Eldorado do Sul, Brazil
(Sosinski 2000). A set of 14 rectangular experimental
plots, sizes between 150 and 600 m2, had been sub-
jected for five years (Gersy Maraschin and collabora-
tors) to combinations of N-fertilizer (0, 30, 100, 170
and 200 kg-N.ha–1.yr–1) and grazing levels (4, 6, 9, 12
and 14 kg of forage dry matter per 100 kg of cattle
live weight). In each experimental plot five quadrats
of 0.5 m ¥ 0.5 m were examined, these were located
systematically on one transect parallel to the largest
dimension, across the middle portion of the plot. The
species found were estimated for cover abundance
and locally described for traits in each quadrat. For
the analysis we used 13 traits (Table 1); as a result the
data contain trait descriptions of 533 different
populations belonging to 81 species. Within-species
variability for most of the traits was high and there-
fore plants of the same species may have been de-
scribed differently in different quadrats, while within-
species variability in the same quadrat was taken care
of by sampling at least three plants in case of more
abundant species. For the analysis the data from
quadrats within each plot were pooled.

The optimization algorithm was applied using N-
addition and grazing level as environmental vari-
ables. Plant types were defined by UPGMA clustering
based on Gower’s similarity index using at each itera-
tion the subset with m traits (for resemblance and
clustering methods see e.g. Podani 2000), where m
varied from one to 13 traits. Gower’s formula is a mean
of m partial similarities computed according to vari-
able type, i.e. binary, qualitative or quantitative traits;
quantitative traits are standardized by the range and the
function was modified to count matching absences in
binary traits. Communities were compared by chord

distances in matrix D and by Euclidean distances, after
standardization of variables to unit variance, in DDDDD.

With the full algorithm an optimal trait subset was
found with five traits defining 23 PFTs (Table 2a). The
optimal traits were growth form, plant inclination,
persistence, leaf shape and leaf area, which defined
PFTs that when used in community descriptions pro-
duced a maximum congruence level of 0.666 taking
into account both environmental factors. If a monothetic
definition of PFTs is adopted with the same five traits,
a total of 82 distinct PFTs would be found and the
congruence would be much lower than the maximum
observed with 23 PFTs polythetically defined (Fig. 4).
Also, the optimal solutions using monothetic defini-
tion of PFTs or the stepwise algorithm resulted in
lower congruence than the optimal solution with
polythetic definition (Table 2). Regarding computa-
tion demand, the analysis with our data set, in a Mac-
intosh G4 (400 MHz), took ca. 1.2 s per trait subset
when defining polythetic PFTs. The most critical fac-
tor for total computation demand, after the number of
traits, is the number of populations, which in this case
was very large.

In addition to the optimal solution, the recursive
algorithm has also pointed to alternative solutions in
terms of trait subsets and partition levels, which have
shown high congruence with grazing and N-levels
though not the highest one (Table 2b). The correlations
D(Dh;Di) between these alternative solutions are in
Table 3, including other non-optimal solutions using
species or all traits. The congruence r(D;DDDDD) of each
solution to the environmental description of the com-
munity sites, the target for the PFT optimization algo-
rithm, is also presented (Table 3). How far from the
target, in relative terms, are the different ways to
describe the plant communities is an indication of
optimality. A low environmental congruence was found
when using all traits defining five PFTs polythetically
(maximum congruence with all traits, see Table 2a) or

Table 1. Traits used for description of plant species in natural grassland communities, Eldorado do Sul, Brazil (Sosinski 2000). All
leaf traits refer to the leaf blade. Trait type codes: 1. Binary; 2. Qualitative; 3. Quantitative (ordered classes).

Label Type Trait and trait states

lf 2 Life form: 1 = phanerophyte; 2 = chamaephyte; 3 = hemicryptophyte; 4 = geophyte; 5 = therophyte
gf 2 Growth form: 1 = solitary; 2 = rosette; 3 = caespitose
pi 3 Plant inclination: 1 = prostrate, 2 = semi-erect, 3 = erect
he 3 Canopy height at estimated ‘centre of gravity’ of standing biomass: 1 =  < 7.5 cm; 2 =  7.5  - 14; 3 =  14 - 22.5; 4 =  22.5 - 30; 5 =  30 - 40; 6 =  > 40 cm
re 1 Reserve structures: 0 = absent; 1 = present
se 2 Seasonality of growth: 1 = winter growing; 2 = summer growing
pe 1 Persistence: 0 = not perennial; 1 = perennial;
ll 3 Leaf length: 1 =  < 4.3 cm; 2 =  4.3 - 8.6; 3 =  8.6 - 13; 4 =  13 - 17.3; 5 =  17.3 - 21; 6 =  > 21 cm
sh 3 Leaf shape: width/length rescaled into classes = 1 =  < 0.38; 2 = 0.38 - 0.76; 3 =  0.76 - 1.13; 4 =  1.13 - 1.56; 5 =  1.56 - 2.25; 6 =  > 2.25
la 3 Leaf area: leaf length ¥ width rescaled into classes =  1 =  < 11.2 cm2; 2 =  11.2 - 22.3; 3 =  22.3 - 36.48; 4 =  36.48 - 38.85; 5 =  38.8 - 67.2; 6 =  > 67.2cm2

tx 3 Leaf texture: 1 =  membranous; 2 =  herbaceous; 3 =  coriaceous; 4 =  succulent; 5 =  fibrous
ts 3 Leaf resistance to traction: 4 classes, estimated by pulling by hand until breaking
su 2 Leaf surface: 1 = prickly; 2 = spiny; 3 = other
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using the species, supporting the need for optimiza-
tion. As a result of redundancy between traits, different
solutions resulted in highly correlated community dis-
tance matrices.

Redundancy among traits is also evident in the PCoA
(Principal Coordinates Analysis) ordination of the ma-
trix of PFTs by five optimal traits (Fig. 5). The ordina-
tion method is described in, e.g., Podani (2000) and was
performed by program MULTIV (Pillar 2001). Optimal
and other traits pointed by suboptimal solutions (Table
2b) define common trends of variation in the data ma-
trix. The first ordination axis reflects variation in growth-
form (from caespitose to solitary), which is associated
to other traits such as leaf texture, area, shape and
resistance to traction. The second ordination axis is
related to variation in life-form (from hemicryptophyte
to therophyte), plant inclination (from prostrate to erect)
and persistence (perennial or not perennial).

The matrix with 14 communities (experimental plots)
described by 23 optimal PFTs was subjected to PCoA
(Principal Coordinates Analysis) (Fig. 6). The analysis

a.
Trait Number of Congruence
subset label groups  r(D;DDDDD) Trait subset

1 4 0.469 sh
2 13 0.595 lf he
3 20 0.623 lf pi he
4 29 0.643 lf pi re ts
5 23 0.666 gf pi pe sh la
6 19 0.650 lf pi re pe la ts
7 23 0.648 lf pi re pe sh la tx
8 22 0.621 lf pi he re pe la tx ts
9 10 0.608 lf pi he re pe le sh la ts
10 12 0.568 lf pi he re pe le sh la tx ts
11 17 0.499 lf gf pi he re pe le sh la tx su
12 25 0.426 lf gf pi he re pe le sh la tx ts su
13 5 0.110 lf gf pi he re se pe le sh la tx ts su

b.
Trait Number of Congruence
subset label groups  r(D;DDDDD) Trait subset

2 19 0.662 lf pi re la ts
3 19 0.650 lf pi re pe la ts
4 23 0.648 lf pi re pe sh la tx *
5 15 0.629 pi he sh la tx
6 13 0.624 lf pi he re la
7 9 0.621 pi he sh
8 14 0.619 pi sh la
OptMo 12 0.526 pi lf re **

* Identical to optimal trait subset given by polythetic PFTs, stepwise algorithm; ** Optimal trait subset found by monothetic PFTs, stepwise algorithm.

Fig. 4. Effect of the number of PFTs in the congruence r(D;DDDDD);
data from 14 experimental plots on natural grassland, Eldorado
do Sul, Brazil (Sosinski 2000). The factors defining DDDDD are
grazing and nitrogen addition. The black line refers to the
optimal trait subset (gf, pi, pe, sh, la), the grey line to a sub-
optimal trait subset (gf, pi, pe, tx, ts). The maximum number of
groups in both cases refers to a monothetic definition of PFTs.

Table 2. Results of the recursive optimization algorithm applied to 14 experimental grassland plots described by cover/abundances
of plant populations, described by 13 traits (Table 1). The correlation r(D;DDDDD) between community variation, as given by plant types, and
variation in nitrogen and grazing levels was maximized. Communities compared by chord distances in matrix D and Euclidean
distances, after standardization of variables, in DDDDD. Plant types defined by cluster analysis (UPGMA) based on Gower similarity index
for the trait subset (function modified to count matching absences in binary traits). The same recursive algorithm found optimal
number of groups for each trait subset size. Maximum congruence was found with five traits, 23 PFTs, as indicated in italics in (a).
In (b) additional suboptimal solutions are given. Data from Sosinski 2000.
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Table 3. Correlation coefficients between alternative ways of analytically describing natural grassland communities, Eldorado do
Sul, Brazil. Each alternative was defined by distances between communities (a total of 91 pair-wise distances between 14
communities) based on different descriptors: In Env the descriptors are levels of grazing and nitrogen (the target for the PFT
optimization algorithm). OptPo is the optimal solution of the optimization algorithm in terms of trait subsets and number of PFTs
defined polythetically (maximum correlation with Env; see Table 2a); 2-8 are sub-optimal solutions of the same algorithm (see Table
2b); OptMo was the optimal solution using monothetic definition of PFTs (see Table 2b); AllPo used all traits defining five PFTs
polythetically and Spp used species only. Data from Sosinski (2000).

OptPo 2 3 4 5 6 7 8 OptMo AllPo Spp Env

OptPo 1.00
2 0.72 1.00
3 0.69 0.94 1.00
4 0.70 0.84 0.80 1.00
5 0.80 0.67 0.66 0.70 1.00
6 0.61 0.79 0.76 0.91 0.72 1.00
7 0.71 0.63 0.62 0.69 0.81 0.67 1.00
8 0.69 0.64 0.61 0.73 0.82 0.78 0.72 1.00
OptMo 0.60 0.75 0.72 0.88 0.67 0.87 0.76 0.66 1.00
AllPo 0.35 0.22 0.18 0.27 0.26 0.19 0.30 0.04 0.27 1.00
Spp 0.24 0.14 0.05 0.21 0.22 0.13 0.10 0.13 0.13 0.55 1.00
Env 0.67 0.66 0.65 0.65 0.63 0.62 0.62 0.62 0.53 0.11 –0.10 1.00

Fig. 5. Principal Coordinates Analysis of 23 PFTs defined by
the optimal trait subset with five traits (gf pi pe sh la). The
ordination method is based on Gower similarity index between
PFTs for the five optimal traits (function modified to count
matching absences in binary traits). Numbers identify the
PFTs as in Table 4. The optimal and additional traits that
were pointed by at least one of the sub-optimal solutions in
Table 2b are also plotted on the basis of their correlation with
the axes after rescaling. Qualitative traits (gf and lf) were
expanded in as many binary traits as the number of states, i.e.
growth-form was expanded in sol, ros, cae for states 1 to 3
and life form in hem, geo, the, for states 3 to 5. See Table 1 for
trait labels and states.

Fig. 6. Principal Coordinate Analysis of 14 experimental
plots on natural grassland under different levels of grazing
and nitrogen, Eldorado do Sul, Brazil (Sosinski 2000).
Numbers indicate available forage (4 - 14 kg per 100 kg cattle
live weight) and N-level (0 - 200 kg.ha-1.yr-1). Communities
described by 23 PFTs (Table 4; Fig. 5) defined by an optimal
trait subset with five traits (maximum r(D;DDDDD) for nitrogen
and grazing levels). PFTs most correlated (r > 0.45) with at
least one of the axes are indicated (t1, t2, …).
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was performed with software SYNCSA (see App. 1). A
gradient defined by N-addition was revealed on the
horizontal ordination axis while another gradient related
to grazing intensity was on the vertical axis. The PFTs
that were the most strongly correlated with these gradi-
ents were indicated. We defined response groups as
groups of PFTs the most positively correlated in their
performance in the plots, not necessarily similar in
terms of traits (Table 4). Response groups were identi-
fied by applying cluster analysis to the matrix contain-
ing performances of PFTs in the communities (UPGMA
based on correlation between PFTs); only the PFTs
most correlated with the ordination axes in Fig. 6 were
classified. The left most PFT (t4) characterizes plots
with the lowest N-addition and medium grazing inten-
sity; it has solitary growth form, prostrated habit, and
leaves with more rounded shape (width/length ratio
close to one), as also inferred from the trait trends
depicted in Fig. 5. On the other extreme, PFTs t13 and
t15, typical of plots with the highest N-addition and
medium grazing intensity, have caespitose growth form,
semi-erect habit, leaves with more linear shape (low

width/length ratio), the plants are also taller. The PFTs
at the top of the diagram, characterizing plots under high
grazing intensity, also reveal variation related to the
level of N-addition. At the left of the diagram, with less
N-addition, PFT t14 has solitary, prostrate, shorter plants
with linear leaves, while at the other extreme, communi-
ties with more N added are characterized by PFT t2
formed by solitary, semi-erect, taller plants; in interme-
diate positions the communities are characterized by
rosette, semi-erect, short plants (t12) or solitary, short
plants with more rounded leaves (t10).

Table 4. Trait description of 23 optimal PFTs defined by cluster analysis (UPGMA) of 456 populations, on the basis of five traits (in
italics). For qualitative traits the most frequent state in the group is shown. For binary or quantitative traits the rounded average in
each PFT is shown. See Table 1 for description of trait states. The traits in italics were found optimal (maximum r(D;DDDDD) for nitrogen
level and grazing level); the additional traits were pointed by at least one of the very close sub-optimal solutions (see Table 2b). PFTs
most correlated with at least one of the ordination axes in Fig. 6 are indicated in italics with their quantities in experimental treatments
ordered by N addition level under low and high grazing pressure. These PFTs were also classified in response groups defined by the
most similar PFTs in their performance in the experimental plots.

Traits Grazing and N levels
Response 9 12.5 14 12.5 9 5.5 4 5.5
groups

PFTs gf pi pe sh la lf re ts tx he 0 30 100 170 200 30 100 170
1 4 1 1 1 3 3 3 1 2 2 2 5.6 4.8 4.4 1.4 0.4 5.2 0.6 0.8
1 6 3 3 1 1 3 3 0 2 2 3 3.6 3.2 3.6 0.6 2.4 2.6 2 1.2
2 1 1 3 1 1 3 4 1 2 2 3 2.8 5.4 5.4 5.4 3.8 2.2 3.2 2.4
2 18 1 2 1 1 4 4 1 2 2 3 0 0 2 1.6 0.6 0.2 1 0
4 15 3 2 0 1 3 5 0 1 2 4 0 0 0 0 1 0 0 0.4
4 13 3 2 1 1 3 3 0 3 2 3 1.4 0.6 0.6 2.6 5.6 0 0 0.8
3 14 1 1 1 1 3 3 0 2 2 2 2.6 1.6 0.8 2 0 2.8 2 2.8
3 12 2 2 1 2 3 3 0 2 2 2 1.6 1.8 1.2 1.2 0.6 1.2 1.8 3.2
3 10 1 1 1 6 2 3 0 2 2 2 1.2 0.2 0 0 0.2 0 1.4 0.6
3 2 1 2 1 2 2 4 1 2 2 3 3.8 4.2 3.6 2.8 3.4 2.8 3.6 8

20 3 1 1 3 3 3 0 2 2 3
21 1 2 1 5 1 4 1 1 1 2
22 1 3 1 4 2 4 1 2 1 3
3 2 2 1 3 5 3 0 3 2 2
7 1 2 0 2 1 5 0 1 2 3
9 1 1 0 3 1 5 0 1 1 2
5 3 2 1 1 2 3 0 1 2 3
8 1 1 1 1 2 3 0 1 2 2
11 1 2 1 2 3 4 1 1 3 3
16 1 2 1 4 2 3 0 1 1 3
19 1 2 0 5 2 5 0 1 1 2
17 3 3 1 1 5 3 0 3 3 3
23 1 3 1 3 4 4 1 2 2 4
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Discussion

Clearly, by adopting the three-matrix approach the
analysis of trait-based community descriptions can re-
veal plant types with maximum association with envi-
ronmental factors or effects.Therefore, the types so de-
fined are likely to be more functional than in previous
methods (e.g. Grime et al. 1997; Gitay et al. 1999) that
did not take into account community and ecosystem
level information. Furthermore, our method identifies
plant types, which is not the case in previous methods
using matrix multiplication as in Feoli & Scimone (1984),
Díaz et al. (1992) and Díaz & Cabido (1997) which can
identify correlated traits but not plant types directly.

The advantage of optimizing traits and PFTs by
numerical analysis of trait-based data was clearly illus-
trated by the case study. Community patterns revealed
by multivariate analysis of data in which the trait subset
and the number of PFTs are optimized can have higher
association with the environmental variables than pat-
terns pointed out by non-optimal trait or species based
data. It may be said that this approach is circular, for the
environmental variables are the same used in the optimi-
zation. Yet, there is no more circularity than when using
regression analysis in which factors are added or re-
moved to improve the fit to the model. In our case traits
are added or removed to maximize the correlation with
the environmental variables.

The method we have proposed that uses a polythetic
definition of PFTs has demonstrated ease of use and
advantages over previous optimization algorithms. The
effect of partition level became evident, indicating that a
polythetic definition of PFTs is better when compared to
the monothetic definition used by Pillar (1999). Further-
more, the optimal solution with polythetic definition
resulted in higher environmental congruence than the
optimal solution using monothetic definition of PFTs.
Also, the full algorithm, by examining all possible trait
subsets gave an optimal solution with higher congru-
ence than the stepwise algorithm.

The data included traits measured in a continuous
scale, which were rescaled in a small number of discrete
classes for the purpose of allowing a monothetic classi-
fication and its comparison with a polythetic definition
of PFTs. However, for a polythetic classification there is
no need for such a simplification, which may lead to
information loss. For the data used in the example,
however, we did not find improvement in the congru-
ence level (results not shown) when the full information
of the quantitative traits were considered.

It could be argued that redundancy among traits may
cause similar effects as in regression analysis when the
estimation of regression coefficients is weakened by cor-
related explanatory variables. The effect of redundant

traits in the optimization algorithm we describe is solely
that by adding a trait that is redundant will cause little
change in the PFTs defined by cluster analysis and by
consequence in the resulting community description. A
high degree of redundancy may be observed in trait-
based data sets, which will result in having several,
almost equally good solutions in terms of traits to define
PFTs. In this case the cost of measuring traits may be
taken into account to balance the optimality of the
solution regarding environmental congruence and the
cost of measuring the traits. It could also be added that
traits that can be measured accurately might be pre-
ferred over those that cannot. Also, some traits might be
more easily interpreted in ecological terms than others.
It is important to differentiate, however, redundancy at
the population level, which is indicated by the degree of
association between traits based on a matrix of
populations by traits, and trait redundancy at the com-
munity level, which is the result of redundancy at the
population level plus its manifestation in terms of differ-
ent plant types and quantities in the matrix of populations
by communities.

The distinction between PFTs and response groups
is important. In this context a response group is defined
as a group of PFTs that are similarly correlated to a
given environmental gradient, irrespective of their dif-
ferences in terms of traits. A community is often com-
posed of different PFTs indicating the same environ-
mental conditions. A corollary to this is that trait aver-
ages at the community level might not be correlated
with a given environmental variable, even with a high
congruence found between the same environmental vari-
ables and compositional differences given by PFTs de-
fined by these traits.

The method we described could identify traits and
PFTs optimal for the factors considered in the case study
(nitrogen and grazing levels). Whether the same traits
and PFTs would be consistently found by analysing
other data sets from other regions with different species
pools is still open to scrutiny. The method, however, is
suitable for jointly analysing such data, without being
restricted by species pool, which allows the evaluation
of a very relevant question in ecology: If consistent
patterns are found based on similar gradients but differ-
ent species pools, we can conclude that there is indeed
convergence in community evolution. A worked exam-
ple on this problem, using a different data set, has been
shown by Pillar (1999).
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